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ABSTRACT
Purpose The impact of efflux transporters in intracellular con-
centrations of a drug can be predicted with modeling techniques.
In Part 1, several compartmental models were developed and
evaluated. The goal of Part 2 was to apply these models to the
characterization and interpretation of saturation kinetic data.
Methods The compartmental models from Part 1were used to
evaluate a previously published dataset from cell lines expressing
varying levels of P-glycoprotein. Kinetic parameters for the trans-
porter were estimated and compared across models.
Results Fits and errors for all compartmental models were iden-
tical. All compartmental models predicted more consistent pa-
rameters than the Michaelis-Menten model. The 5-compartment
model with efflux out of the membrane predicted differential
impact of P-gp upon apical versus basolateral drug exposure.
Finally, the saturable kinetics of active efflux along with a perme-
ability barrier was modeled to delineate a relationship between
intracellular concentration with or without active efflux versus
donor concentration. This relationship was not a rectangular
hyperbola, but instead was shown to be a quadratic function.
Conclusions One approach to estimate an in vivo transporter
effect is to first model an intracellular Km value from in vitro data,
and use this value along with the appropriate tissue transporter
expression levels and relative surface area to calculate the relevant
apparent Km (or Ki) values. Together with the results from Part 1,
these studies suggest that compartmental models can provide a path
forward to better utilize in vitro transporter data for in vivo predictions
such as physiologically based pharmacokinetic modeling.
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ABBREVIATIONS
3C Three-compartment model
5Ccell Five-compartment model with apical efflux

modeled out of the cell
5Cmem Five-compartment model with apical efflux

modeled out of the apical membrane
CA Concentration of drug in the apical compartment
CAM Concentration of drug in the apical membrane

compartment
CB Concentration of drug in the basolateral

compartment
CBM Concentration of drug in the basolateral membrane

compartment
Ccell Concentration of drug in the cellular compartment
Ccell,AB Concentration of drug in the cellular compartment

upon apical drug exposure
Ccell,BA Concentration of drug in the cellular compartment

upon basolateral drug exposure
Ccell,pass Concentration of drug in the cellular compartment

in the absence of apical efflux
Cdonor Concentration of drug in the donor compartment
CLae Active apical efflux clearance
CLd Passive diffusional clearance
CLi Passive diffusional clearance into a membrane

compartment
CLo Passive diffusional clearance out of a membrane

compartment
Creceiver Concentration of drug in the receiver

compartment
CV Coefficient of variation
IC50 Inhibitor concentration required to cause 50%

inhibition
Ki Inhibition constant for competitive inhibition
Km Michaelis-Menten constant
Km,app Apparent Km
Km,app,AB Apparent Km calculated upon apical

drug exposure
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Km,app,BA Apparent Km calculated upon basolateral drug
exposure

Kp Membrane partition coefficient for a drug
MDR1 multidrug resistance 1 gene
MM Michaelis-Menten
Papp Apparent permeability
P-gp P-glycoprotein
PS1/S Permeability-surface area product normalized by

surface area
RMSE root mean square error
Vmax maximal velocity

INTRODUCTION

There is an increasing interest in the effect of transporters on
the disposition of drugs (1,2). Uptake and efflux transporter
activity can increase or decrease intracellular concentrations,
respectively. These changes in intracellular concentrations can
result in significant differences in target activity (for intracel-
lular targets), distribution (e.g. blood–brain barrier permeabil-
ity), metabolism, and side effect profiles such as cytochrome
P450 inhibition or induction. Also, inhibition of these trans-
porters by other drugs can result in additional drug-drug
interactions (DDIs). Regulatory agency guidances state that
the kinetic parameters for active transport processes should be
used to evaluate the need for clinical DDI studies (3,4). In
general, accurate intracellular concentrations are required for
pharmacokinetic and pharmacodynamic predictions (5).
Therefore, accurate transporter kinetic parameters become
necessary inputs for physiologically-based pharmacokinetic
(PBPK) and pharmacodynamics models.

It has been reported that apparent kinetic parameters,
based on extracellular concentrations may vary with cell type
(6,7). A number of investigators have used compartmental
models to study the kinetics of transporters (8–11) as well as
the interactions between transport and metabolism (12–14).
Bentz et al. were the first to discuss that the observedKm for an
efflux transporter can be very different than the actual Km
(15). Korjamo et al. suggested that a decrease in the intracel-
lular concentration of efflux transporter substrates was respon-
sible for the shift in observed Km values (6). IC50 and Km
values were shown byKalvass and Pollack to be overestimated
using extracellular concentrations (16). Shirasaka et al. have
shown a direct correlation between P-glycoprotein (P-gp)
expression and Km,app values (7). Using a three compart-
ment model to calculate intracellular concentrations,
Tachibana et al. provided more consistent Km estimates
across cell lines than is calculated from a Michaelis-Menten
(MM) approach (8).

In our previous work (17) and in Part 1, we evaluated com-
partmental models with explicit membrane compartments to

predict intracellular concentrations from bidirectional perme-
ability experiments. In the present study, we used the saturation
data for three P-gp substrates in various cell lines reported by
Tachibana et al. (8), and conducted a theoretical analysis of
different compartmental models. The models that were evaluat-
ed included a 3-compartment model (3C), a 5-compartment
model with efflux out of the cytosol (5Ccell), and a 5-
compartment model with efflux out of the apical membrane
(5Cmem). Using the Tachibana dataset, we fit saturation
curves to obtain kinetic parameters for these models.
With the estimated kinetic parameters, we simulated
basolateral exposure in each case. An approach to the
interpretation of in vitro transporter kinetic data is de-
tailed in this report.

MATERIALS AND METHODS

The data from Tachibana et al. (8) was digitized to provide
Cdonor and Papp values. The Papp values were used to calcu-
late receiver concentrations assuming 90 min incubations and
a 1.0 cm2 surface area. Mathematica 9 (Wolfram Research)
was used for all calculations. For the 3C, 5Ccell and 5Cmem,
differential equations for the models in Fig. 1 were used to

Fig. 1 Compartmental models to predict transporter kinetics. (a) A 3-
compartment (3C) model was developed with apical, cellular, and basolateral
compartments. Diffusional clearance (CLd) with apical efflux clearance (CLae)
was modeled. (b) A 5-compartment model was developed with apical, apical
membrane, cellular, basolateral membrane, and basolateral compartments.
Diffusional clearances in (CLi) and out (CLo) of the membranes, with apical
efflux clearance (CLae), were modeled. Apical efflux was modeled either out
of the cell (5Ccell, solid arrow) or out of the apical membrane (5Cmem,
dashed arrow).
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estimate clearance values using the FindFit or Nonlinear-
ModelFit routines as described previously (17). For the 3C
model, membrane permeability was modeled as a passive
diffusion clearance (CLd) which was the same across the apical
and basolateral membranes. For the 5C models, the molecule
was allowed to partition into the membrane with a CLi term
and out of the membrane with a CLo term. The partition
constant CLi/CLo was set as the experimental membrane
partition coefficient (Kp) for microsomes. Microsomes were
used because the endoplasmic reticulum membranes are
unsorted membranes and should represent an average of
apical, basolateral, and other intracellular membranes. A
membrane content of 10% was divided evenly between apical
and basolateral membrane compartments (see Part 1 for
details).

To fit the Michaelis Menten (MM), 3C, and 5Ccell and
5Cmem models (Fig. 1) to the saturation data, an automated
procedure was used. First, a permeability equation that in-
cludes MM saturation kinetics for transport and a first order
passive diffusion clearance (CLd) for passive permeability, was
fit to the experimental data. Equation 1 was used to obtain
estimates of CLd, Vmax, and Km,app.

Papp S ¼ CLd þ Vmax
K m;app þ Cdonor

ð1Þ

where Papp is the apparent permeability, S is the surface area,
and CLd is the passive diffusional clearance. This equation
represents a permeability-transport saturation curve with a
lower plateau composed of passive permeability and transport
in the Vmax/Km region, a transition region, and an upper
plateau where transport is saturated and passive diffusion
dominates. The Km,app is the concentration at the center of
the transition region.

Since plateau regions of the saturation curves are well
predicted with the MM equation for most compounds and
cell lines, parameter estimates with this equation were used in
the initial fitting process for the 3C and 5C models. The
calculated Cdonor and Creceiver values at 1000 * Km,app in
Eq. 1 were used to estimate CLd using the differential equa-
tions for the 3C and 5C models as described in detail previ-
ously (17). This value and the predicted concentrations at
Km,app/1000 were used to estimate CLae. Next, the values
of CLd and CLae were used to estimate Km with the exper-
imental saturation curve. Vmax can then be calculated from
CLae * Km. The resulting values for CLi, CLae, and Km
were then used as initial estimates to simultaneously solve for
CLi, CLae, and Km with the experimental saturation curve.
This procedure resulted in automated convergence to identi-
cal curves and RMSE values for the 3C, 5Cmem, and 5Ccell
models. It should be noted that, in contrast to the approach

used by Tachibana et al., sink-conditions and steady state are
not assumed.

Estimated clearances, Km and Vmax values for each mod-
el were used to simulate the saturation profile in the B → A
direction. Quinidine simulations were used to display the impact
of saturation kinetics on the various intracellular concentrations.
The average values of CLi and Km for the different cell lines
were used along with the fit values for CLae to generate the
concentration profiles for each cell line and for passive diffusion
only (when CLae = 0). Ccell is determined by both passive
diffusion and active transport. In order to evaluate the impact
of efflux alone on intracellular concentrations, simulated values
for Ccell were subtracted from Ccell,pass (CLae = 0). This differ-
ence (Ccell,pass-Ccell) represents the effect of efflux on Ccell.

RESULTS

Kinetic Parameters Estimated with the 3C and 5C
Models

Figure 2a–e depict quinidine data for receiver to donor con-
centration ratio versus donor concentrations in 5 cell lines
expressing varying levels of P-gp. The MM model was fit to
the data (blue curve) to obtain Km,app and Vmax estimates
(Table I). Parameter estimates obtained by Tachibana et al.
with their 3-compartment model are also listed in Table I.
The 3C model (Fig. 1a) was fit to the data (Fig. 2a–e, red
curve) and yielded similar parameter estimates as Tachibana
et al.’s model. The Tachibana as well as the 3C models
predicted Km estimates across cell lines with lower CVs than
the MMmodel. The 5Ccell and 5Cmemmodels had RMSEs
identical to the 3C model, and all three models yielded
overlapping fits (Fig. 2a–e, red curves). Identical fits were also
obtained with the 7-compartment model described in Part 1
(data not shown). The 5Ccell model yielded parameter esti-
mates similar to the 3C model. As expected, the 5Cmem
model gave different Km estimates compared to all other
models (Table I). This is because the apical membrane
compartment is the driving compartment for efflux in
this model, and this compartment has very different
(higher) concentrations as compared with intracellular
concentrations. Interestingly, this model resulted in Km esti-
mates with CVs similar to the other compartmental models,
and lower CVs than Km,app obtained with the MM model.
Figure 2f shows the fold decrease in intracellular concentra-
tion as a function of P-gp expression level. As discussed previ-
ously (17), the 3C and 5Ccell models show similar decreases in
Ccell for the A → B and B → A directions. However, the
5Cmem model predicts a much lower decrease in Ccell in the
B → A direction.

Similar to Fig. 2 and Table I, data and model fits for
vinblastine and verapamil are depicted in Figs. 3 and 4, and
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Tables II and III, respectively. The models exhibited the same
trend for these 2 substrates as for quinidine i.e. the 3C and
5Ccell models predicted parameters similar to those reported
by Tachibana et al. The Km estimates across various cell lines
were more consistent as compared with the MM model. The
5Cmem model predicted different Km estimates because of a
different driving force compartment.

Difference Between Predicted Ccell Ratios in the A→ B
Versus B → A Directions

Next, basolateral exposure was simulated for all three sub-
strates. Listed in Table IV are ratios of predicted intracellular
concentrations in the B→ A versus A→ B direction (Ccell,BA/
Ccell,AB). The Ccell,BA/Ccell,AB ratios were generally close to 1
across cell lines and for all 3 substrates with the 3C and 5Ccell
models. The 5Cmemmodel predicted higher Ccell,BA/Ccell,AB

ratios, with the highest ratio for cell lines with the highest P-gp
expression – 10.6, 26.8 and 1.9 for quinidine, vinblastine and
verapamil respectively.

The concentrations in each compartment for the 5Cmem
model were simulated for increasing donor concentrations of
quinidine in both the A → B and B → A directions (Fig. 5).
Figures 5a–e show compartment concentrations upon apical

drug exposure, while Fig. 5f–j exhibit compartment concen-
trations upon basolateral drug exposure. For apical addition
the apical membrane concentration profile (Fig. 5b) is
nonlinear between 0 and 10 μM due to the saturation of the
transporter. The degree of nonlinearity increases with increas-
ing levels of P-gp expression. This nonlinearity in concentra-
tion is propagated to all subsequent compartments (Fig. 5c–e).
For basolateral addition (Fig. 5f–j) the impact of the transport-
er on the compartments prior to the apical membrane (B, BM,
and Cell, Fig. 5h–j) is diminished.

Relationship Between Intracellular and Donor
Concentrations

For all models, the shape of the saturation curves in Figs. 2, 3,
and 4 exhibited a steeper than expected transition (based on
MM kinetics alone) between plateaus. In order to explain this
shape, a simplified 2-compartmental model depicting a diffu-
sional barrier as well as active efflux out of a transporter model
(depicted as a cell compartment for simplicity) was used
(Fig. 6a). Saturable transport was modeled with the MM
equation. Under the assumptions of initial rate conditions
and steady state conditions for Ccell, when the rate of change
of intracellular concentration is zero, a quadratic relationship

Fig. 2 Quinidine saturation curves
and effect of P-gp expression level
on intracellular concentration.
Creceiver/Cdonor ratio is plotted
versus Cdonor, from experiments in
(a) MDR1-MDCKII, (b) highly P-gp
induced Caco-2, (c) P-gp induced
Caco-2, (d) normal Caco-2, and
(e) MDR1 knockdown Caco-2
cells. All data are from Tachibana
et al. (8). Blue curves indicate a MM
fit, and red curves indicate 3C,
5Ccell, and 5Cmem model fits. All
three compartmental model fits are
overlapping and cannot be
distinguished from one another.
(f) The fold decrease in intracellular
concentration relative to donor
concentration for each model in the
A → B and B → A direction at
donor concentration of Km,app/10.
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between transporter compartment concentration (Ccell) and
donor concentration (CA) was derived (Fig. 6b). The impact
of efflux transport alone on Ccell was evaluated by subtracting
Ccell from Ccell,pass (Ccell,pass is calculated at CLae = 0), for the
data in Fig. 5c. The fits of the quadratic, MM, and Hill
equations to Cdonor versus Ccell,pass - Ccell are shown in Fig. 7.
An Eadie-Hofstee plot of these data (Fig. 7 inset) did not
support MM or Hill kinetics, and the quadratic equation pro-
vided the best fit to the predicted concentration curve. Thus,

the equation derived from themodel in Fig. 6 incorporates both
passive diffusion and MM efflux, and can be used to describe
transporter saturation kinetics in a cell monolayer.

DISCUSSION

Transporter kinetic parameters are necessary when incorpo-
rating transport into PBPK models for in vivo disposition, and

Table I Kinetic Parameter Estimates for Pgp-mediated Transport of Quinidine in Various Cell Lines, Obtained from Different Models

Cell line P-gp level Km,app Km Vmax/S CLd/Sa Vmax/P-gp RMSE
μg.cm−2 μM μM ×10−5 μM.cm.s−1 ×10−5 cm.s−1 ×10−8 s−1

MM equation

MDR1-MDCKII 19.9 36 1.87 0.10 0.005

Highly P-gp induced Caco-2 7.4 9 1.41 0.05 0.001

P-gp induced Caco-2 4.5 5 1.37 0.05 0.002

Normal Caco-2 1.2 1 1.43 0.04 0.002

MDR1 knockdown Caco-2 0.8 0 1.39 0.04 0.003

CV 1.16 0.14 0.44

Tachibana et al.(8)

MDR1-MDCKII 359.6 0.339 29.09 3.4 0.0809

Highly P-gp induced Caco-2 191 0.199 6.37 2.5 0.0334

P-gp induced Caco-2 103.7 0.234 5.13 2.6 0.0495

Normal Caco-2 26.8 0.23 1.7 2.8 0.0634

MDR1 knockdown Caco-2 8.71 0.253 0.68 2.7 0.0781

CV 0.21 0.13 0.33

3C model

MDR1-MDCKII 0.255 29.1 3.9 0.081 0.003

Highly P-gp induced Caco-2 0.235 9.2 2.9 0.048 0.001

P-gp induced Caco-2 0.228 5.8 2.9 0.056 0.001

Normal Caco-2 0.190 1.7 3.2 0.065 0.002

MDR1 knockdown Caco-2 0.210 0.748 3.119 0.086 0.003

CV 0.11 0.12 0.24

5Ccell model (Kp=875)

MDR1-MDCKII 0.203 38.0 5.7 0.106 0.003

Highly P-gp induced Caco-2 0.176 12.4 4.6 0.065 0.001

P-gp induced Caco-2 0.175 8.0 4.6 0.077 0.001

Normal Caco-2 0.146 2.3 4.9 0.087 0.002

MDR1 knockdown Caco-2 0.159 0.99 4.8 0.114 0.003

CV 0.12 0.10 0.22

5Cmem model (Kp=875)

MDR1-MDCKII 261 85.8 5.7 0.239 0.003

Highly P-gp induced Caco-2 234 28.8 4.6 0.151 0.001

P-gp induced Caco-2 228 18.5 4.6 0.178 0.001

Normal Caco-2 193 5.4 4.9 0.203 0.002

MDR1 knockdown Caco-2 199 2.2 4.8 0.254 0.003

CV 0.12 0.09 0.21

ND not determined; Km,app apparent Km from the MM fit; KmMM constant; Vmax/S surface area normalized maximal velocity; CLd/S surface area normalized
passive clearance; Vmax/P-gp P-gp expression level normalized Vmax; RMSE root mean square error
a CLd is listed for all compartmental model. For the 5C models, CLd is calculated as CLi/2 (24)
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to predict drug-drug interactions. When estimating efflux
transporter kinetic parameters with permeability assays, dif-
ferent cell lines can provide very different Km,app values (7,8).
These differences are not random but are due to the effect of
the transporter on the concentration of substrate at the trans-
porter active site. Transport activity decreases the concentra-
tion resulting in higher Km,app values.

A number of studies have shown that compartmental
analyses can provide improved predictions of pharma-
cokinetic parameters (10,18,19). Tachibana et al. have
elegantly shown that differences in apparent Km values
across cell lines can be explained if calculated intracel-
lular concentrations are used instead of donor concen-
trations (8). Since P-gp has been suggested to transport

substrates directly from the apical membrane (20–23), we
have developed models that incorporate explicit membrane
compartments (17). These models predict significant differ-
ences in intracellular concentrations for apical versus
basolateral addition (see Part 1), and we have explored the
impact of membrane compartments on transporter kinetics.
To this end, we have simulated intracellular concentrations
for the Tachibana dataset with three models: 3C, 5Ccell, and
5Cmem. In general the 3C and 5Ccell models provide similar
parameter estimates and simulated intracellular concentration
profiles. The 3Cmodel might be sufficient for efflux out of the
cytosol. For the 5Cmem model, the apical membrane con-
centration drives the active efflux process and marked differ-
ences can result.

Fig. 3 Vinblastine saturation
curves. Creceiver/Cdonor ratio is
plotted versus Cdonor, from
experiments in (a) highly P-gp
induced Caco-2, (b) P-gp induced
Caco-2, (c) normal Caco-2, and (d)
MDR1 knockdown Caco-2 cells. All
data are from Tachibana et al. (8).
Blue curves indicate a MM fit, and
red curves indicate 3C, 5Ccell, and
5Cmem model fits. All three
compartmental model fits are
overlapping and cannot be
distinguished from one another.

Fig. 4 Verapamil saturation curves.
Creceiver/Cdonor ratio is plotted
versus Cdonor, from experiments in
(a) MDR1-MDCKII, (b) highly P-gp
induced Caco-2, (c) P-gp induced
Caco-2, and (d) normal Caco-2
cells. All data are from Tachibana
et al. (8). Blue curves indicate a MM
fit, and red curves indicate 3C,
5Ccell, and 5Cmem model fits. All
three compartmental model fits are
overlapping and cannot be
distinguished from one another.
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Comparison of Parameter Estimates for Different
Compartmental Models

As seen in Tables I, II, and III, all compartmental models
resulted in lower RMSE for the fits compared to theMMmodel
(Eq. 1). Also, the CV for the Km estimates across the cell lines
was lower for all compartmental models. The passive permeabil-
ity values were similar across cell lines for a given compound.
Vmax estimates were similar for both the MM, 3C, and 5Ccell

models. This can be expected since these values are defined by
the plateau regions shown in Figs. 2, 3, and 4. Due to the large
partition coefficients, higher estimates for Km and Vmax are
obtained when efflux occurs from the membrane (5Cmem).

Kinetic Parameters for Apical Versus Basolateral Exposure

In a previous publication (17) and in Part 1, we have discussed
the differential effect of an apical efflux transporter for apical

Table II Kinetic Parameter Estimates for Pgp-mediated Transport of Vinblastine in Various Cell Lines, Obtained from Different Models

Cell line P-gp level Km,app Km Vmax/S CLd/Sa Vmax/P-gp RMSE
μg.cm−2 μM μM ×10−5 μM.cm.s−1 ×10−5 cm.s−1 ×10−8 s−1

MM equation

MDR1-MDCKII ND ND ND ND ND

Highly P-gp induced Caco-2 251 227 0.91 1.19 0.002

P-gp induced Caco-2 163 137 0.90 1.32 0.001

Normal Caco-2 102 70 0.79 2.61 0.001

MDR1 knockdown Caco-2 31 19 0.74 2.21 0.001

CV 0.68 0.10 0.38

Tachibana et al.(8)

MDR1-MDCKII 360 ND ND ND ND

Highly P-gp induced Caco-2 191 1.4 113 1.39 0.593

P-gp induced Caco-2 104 3.0 88 1.44 0.849

Normal Caco-2 27 3.1 40 1.23 1.493

MDR1 knockdown Caco-2 9 1.7 18 1.29 2.078

CV 0.38 0.07 0.53

3C model

MDR1-MDCKII ND ND ND ND ND

Highly P-gp induced Caco-2 1.07 121 1.6 0.63 0.001

P-gp induced Caco-2 3.04 106 1.7 1.02 0.001

Normal Caco-2 3.97 69 1.6 2.56 0.001

MDR1 knockdown Caco-2 1.61 22 1.5 2.48 0.001

CV 0.55 0.05 0.59

5Ccell model (Kp=1550)

MDR1-MDCKII ND ND ND ND ND

Highly P-gp induced Caco-2 0.598 228 3.9 1.19 0.001

P-gp induced Caco-2 1.781 193 4.0 1.86 0.001

Normal Caco-2 2.242 125 3.9 4.67 0.001

MDR1 knockdown Caco-2 0.905 40 3.8 4.58 0.001

CV 0.55 0.03 0.59

5Cmem model (Kp=1550)

MDR1-MDCKII ND ND ND ND ND

Highly P-gp induced Caco-2 1445 595 3.9 3.1 0.001

P-gp induced Caco-2 4260 516 4.0 5.0 0.001

Normal Caco-2 5492 348 3.8 13.0 0.001

MDR1 knockdown Caco-2 2209 111 3.8 12.8 0.001

CV 0.55 0.03 0.61

ND not determined; Km,app apparent Km from the MM fit; KmMM constant; Vmax/S surface area normalized maximal velocity; CLd/S surface area normalized
passive clearance; Vmax/P-gp P-gp expression level normalized Vmax; RMSE root mean square error
a CLd is listed for all compartmental model. For the 5C models, CLd is calculated as CLi/2 (24)
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versus basolateral addition when efflux occurs from the mem-
brane. Although the experimental dataset used in this study
measured permeability in the A → B direction, the kinetic
parameters obtained from these analyses can be used to
simulate profiles in the B → A direction. This would be
relevant in organs such as the liver and the kidney, where
the basolateral exposure occurs. As can be seen in Fig. 5 and
Table IV, very different profiles in intracellular concentrations

are obtained. When efflux transport is modeled from the
apical membrane, the nonlinear saturation profile will bemost
pronounced in the apical membrane compartment. For apical
addition, similar decreases in concentrations will be observed
in all subsequent compartments. Also, similar nonlinearity will
be observed in subsequent compartments, as depicted in
Fig. 5b–e. For basolateral addition, the basolateral membrane
and intracellular compartments are exposed to drug prior to

Table III Kinetic Parameter Estimates for Pgp-mediated Transport of Verapamil in Various Cell Lines, Obtained from Different Models

Cell line P-gp level Km,app Km Vmax/S CLd/Sa Vmax/P-gp RMSE
μg.cm−2 μM μM ×10−5 μM.cm.s−1 ×10−5 cm.s−1 ×10−8 s−1

MM equation

MDR1-MDCKII 3.95 3.4 1.69 0.009 0.001

Highly P-gp induced Caco-2 1.93 1.3 1.51 0.007 0.004

P-gp induced Caco-2 1.28 0.7 1.49 0.006 0.002

Normal Caco-2 0.82 0.1 1.60 0.005 0.001

MDR1 knockdown Caco-2 ND ND ND ND ND

CV 0.69 0.06 0.27

Tachibana et al.(8)

MDR1-MDCKII 359.6 0.76 4.53 3.01 0.0126

Highly P-gp induced Caco-2 191 0.495 2.21 2.75 0.0116

P-gp induced Caco-2 103.7 0.384 1.1 2.7 0.0106

Normal Caco-2 26.8 0.37 0.24 2.88 0.0090

MDR1 knockdown Caco-2 8.71 ND ND ND ND

CV 0.36 0.05 0.14

3C model

MDR1-MDCKII 0.670 5.4 3.8 0.015 0.001

Highly P-gp induced Caco-2 0.388 2.3 3.4 0.012 0.003

P-gp induced Caco-2 0.334 1.3 3.4 0.012 0.002

Normal Caco-2 0.327 0.3 3.7 0.011 0.001

MDR1 knockdown Caco-2 ND ND ND ND ND

CV 0.38 0.06 0.14

5Ccell model (Kp=1430)

MDR1-MDCKII 0.474 8.0 6.7 0.022 0.001

Highly P-gp induced Caco-2 0.270 3.5 6.2 0.018 0.003

P-gp induced Caco-2 0.233 1.9 6.1 0.019 0.002

Normal Caco-2 0.217 0.4 6.5 0.015 0.001

MDR1 knockdown Caco-2 ND ND ND ND ND

CV 0.40 0.04 0.15

5Cmem model (Kp=1430)

MDR1-MDCKII 1016 19.6 7.7 0.055 0.001

Highly P-gp induced Caco-2 608 9.0 6.2 0.047 0.003

P-gp induced Caco-2 483 4.6 6.1 0.045 0.002

Normal Caco-2 491 1.1 6.5 0.040 0.001

MDR1 knockdown Caco-2 ND ND ND ND ND

CV 0.39 0.04 0.13

ND not determined; Km,app apparent Km from the MM fit; KmMM constant; Vmax/S surface area normalized maximal velocity; CLd/S surface area normalized
passive clearance; Vmax/P-gp P-gp expression level normalized Vmax; RMSE root mean square error
a CLd is listed for all compartmental model. For the 5C models, CLd is calculated as CLi/2 (24)
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the apical membrane. Therefore, the intracellular concentra-
tion profile will display a dampened nonlinearity (Fig. 5f–i).
Figure 5e and f also show that determining kinetic parameters
for apical efflux transporters with apical addition will be more
sensitive than basolateral addition.

Model Selection

For all models, the fitted saturation curves in Figs. 2, 3, and 4
are identical, with a steeper than expected (based on MM
kinetics alone) transition between plateaus. In general, fitting
different models to a data set will normally result in errors that
can be used to evaluate these models. In the present study, the
3C, 5Ccell, and 5Cmem models result in indistinguishable
predicted saturation curves (Figs. 2, 3, and 4). A familiar
analogy is the observation of hyperbolic saturation kinetics
for enzymes with very different kinetic schemes. The 3C,
5Ccell and 5Cmem models have been optimized to minimize
the error and gave identical model fits and identical errors,
albeit with different parameter estimates. Therefore, satura-
tion curves alone cannot be used to evaluate the different
compartmental models. Models could be differentiated when
considering concentration-time profiles (for example lag
times; see Part 1) or differences in binding constants in the A
→ B and B → A directions.

Nature of the Transporter Saturation Curve

We can examine the increased slopes of the saturation curves
in Figs. 2, 3, and 4 (relative to the MM model) using a
simplified 2-compartment model shown in Fig. 6. In this
model, there is a diffusion barrier between the donor and
transporter compartment. For simplicity, we have defined
the transporter compartment as the cell, but this could be
any compartment from which transport occurs. The resultant
relationship between donor concentration and cell concentra-
tion with MM saturation of the transporter has been derived
under steady-state and initial rate assumptions. This relation-
ship is not rectangular hyperbolic but is quadratic. The impact
of the transporter on Ccell can be calculated by subtracting
Ccell from Ccell,pass. Plotting this difference versus Cdonor results
in the saturation curve shown in Fig. 7. The fits of the MM,
Hill, and the quadratic equations are also shown. The qua-
dratic equation clearly provides the best fit to the simulated
data. Additionally, the Eadie-Hofstee plot of this data (Fig. 7,
inset) is not indicative of MM or Hill kinetics.

It should also be noted that the relationships described in
Figs. 6, and 7 will be applicable to drug metabolizing enzymes
as well. The saturation kinetics of any active process that
removes drug from a compartment will be impacted as
discussed above, when this compartment is separated from
the site of measurement by a diffusional barrier. This has

Table IV Predicted Intracellular Concentration Ratios in the A → B and B → A Directions from Different models. Intracellular Concentration Ratios were
Calculated at Two Concentrations: Km and Km/10

Drug Cell line 3C model 5Ccell model 5Cmem model

CcellBA/CcellAB
at Km

CcellBA/CcellAB at
Km/10

CcellBA/CcellAB
at Km

CcellBA/CcellAB at
Km/10

CcellBA/CcellAB
at Km

CcellBA/CcellAB at
Km/10

Quinidine MDR1-MDCKII 1.19 1.25 1.17 1.28 1.31 10.58

Highly P-gp induced
Caco-2

1.15 1.17 1.12 1.18 1.37 5.73

P-gp induced Caco-2 1.14 1.15 1.12 1.16 1.39 4.21

Normal Caco-2 1.12 1.13 1.09 1.11 1.33 2.13

MDR1 knockdown
Caco-2

1.09 1.09 1.04 1.06 1.17 1.46

Vinblastine Highly P-gp induced
Caco-2

1.07 1.11 1.04 1.16 1.21 26.80

P-gp induced Caco-2 1.08 1.10 1.06 1.12 1.37 9.18

Normal Caco-2 1.08 1.09 1.06 1.09 1.45 5.67

MDR1 knockdown
Caco-2

1.07 1.08 1.05 1.08 1.48 4.83

Verapamil MDR1-MDCKII 1.12 1.14 1.08 1.11 1.27 1.92

Highly P-gp induced
Caco-2

1.11 1.12 1.05 1.08 1.25 1.76

P-gp induced Caco-2 1.09 1.10 1.03 1.05 1.17 1.49

Normal Caco-2 1.07 1.07 0.99 1.00 1.03 1.09
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Fig. 5 Predicted A→ B and B→ A concentration profiles. The 5Cmem model was used to predict concentration profiles for quinidine in each compartment
relative to donor concentration, upon apical (a–e) or basolateral (f–j) drug exposure. Profiles are depicted for apical efflux in MDR1-MDCKII (red), highly P-gp
induced Caco-2 (blue), P-gp induced Caco-2 (green), normal Caco-2 (yellow), and MDR1 knockdown Caco-2 (pink) cells. The profile in black is a simulation in the
absence of apical efflux. Concentrations shown are apical (a, f), apical membrane (b, g), intracellular (c, h), basolateral membrane (d, i), and basolateral (e, j).
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implications when intracellular transport and elimination pro-
cesses are considered in relation to plasma concentrations.
Either compartmental models or the quadratic relationship
in Fig. 6 will correctly describe these relationships.

Since we generally relate pharmacologic activities to un-
bound plasma concentrations, the most relevant transporter
Km (and Ki as well) values are the Km,app for that particular
tissue. The Km,app value will be dependent on the charac-
teristics of the tissue including level of P-gp expression and
membrane surface area. Since P-gp expression levels in cell
models do not necessarily match expression levels in tissues, a
Km,app measured in vitro may be misleading. As shown in
Tables I, II, and III and discussed by Tachibana et al. (8), more
consistent Km values are calculated with compartmental
models than with the MM model. An approach to estimate
an in vivo transporter effect would be to first model an intra-
cellular Km value from in vitro data, and use this value along
with the appropriate tissue transporter expression levels and

relative surface area to calculate the relevant apparent Km (or
Ki) values. For apical exposure (the gut and the brain for P-
gp), the 3C and 5C models will give similar results since these
models show similar, and sometimes large, fractional de-
creases in intracellular concentrations due to P-gp. For
basolateral exposure (liver and kidney) the 3C and 5Ccell
models may over-predict the impact of efflux transport on
intracellular concentrations (see Fig. 2f).

In summary, we have evaluated the use of compartmental
models to describe the observed saturation kinetics for P-gp.
As discussed by Tachibana et al., efflux transport can decrease
intracellular concentrations resulting in different observed
saturation curves. All three compartmental models evaluated
here adequately describe the impact of efflux transport on
permeability across cells with different P-gp levels. The CV for
calculated Km values for all three substrates and all three
models were lower than the CV for the Km,app values. This
suggests that the predicted intracellular concentrations can be
used to relate in vitro results to in vivo effects of efflux transport.
Since identical predicted curves were obtained for all com-
partmental models, this data cannot be used to differentiate
betweenmodels. This is consistent with results in Part 1, where
model errors were generally independent of model complex-
ity. P-gp effluxes substrates directly from the membrane, and
explicit membrane models such as the 5Cmem may have
some advantages. We have also described the impact of a
permeability barrier on saturation kinetics. Taken together,
this and previous studies suggest that compartmental models
may provide a path forward to utilize in vitro transporter data
for in vivo predictions.
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Fig. 6 A 2-compartmental model
depicting a diffusional barrier as well
as active efflux out of a transporter
compartment (a). For simplicity, the
transporter compartment is defined
as ‘Cell’. Diffusional clearance (CLd)
with apical efflux clearance (CLae)
was modeled. (b) Derivation of a
quadratic equation defining the
relationship between Ccell and CA in
the presence of active efflux as well
as a diffusional barrier. The volume
of the cell is assumed to be 1.

Fig. 7 Impact of efflux transporter on saturation curve of Ccell. The simulated
difference between Cell in the absence and presence of efflux transport
(Ccell,pass-Ccell) is plotted versus donor concentration (CA). MM (pink), Hill
(red), and quadratic (blue) equation fits are depicted. Fitting included data from
0 to 300 μM CA (only 0–20 μM CA is shown for clarity). The quadratic
equation provided the best fit to the simulated data. Inset: Eadie-Hofstee plot
of simulated data.
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